SELF HEALING MATERIAL FOR SPACE APPLICATIONS
UCON-046, Concordia University

Space environment, self-healing epoxy, 5-ethylidene-2-norbornene (5E2N)

BACKGROUND
Composite materials used in space application are susceptible to micro-cracking due to stresses and vibrations during launch, extreme temperature fluctuations from -150°C to 150°C and impact of space dusts. These structures are very expensive to produce and deploy. It is, therefore, important to ensure their long operational life. Furthermore, because of their remote locations, it is impractical to repair the structures manually.

To circumvent these problems, self-healing technologies are the solution. Currently such technologies still require some external assistance to activate the self-healing process and are not automated.

TECHNOLOGY
The technology consists of a repair mechanism involving a liquid monomer 5-ethylidene-2-norbornene (5E2N) contained in small capsules distributed in a resin matrix that will react with a catalyst in response to impacts (Fig. 1). Polymerization of the monomer forms a solid structure and bridges the walls of the cracks, healing them, and hence efficiently repairing the damage (Fig. 2).

Figure 1: Self healing using liquid monomer reaction and catalyst

COMPETITIVE ADVANTAGES
- Light-weight, high stiffness and high strength of the epoxy fibers
- A large range of operating temperature from -80°C to 146°C
- Short polymerization time (less than one minute at 40°C), hence faster healing rate
- Uses a monomer which is less toxic than the currently used DCPD (define) monomer
- Significantly increases the stability of the catalyst encapsulation in the monomer (lower catalyst loading of 0.1% (w/w))
- Reduces maintenance costs.

Figure 2: Thermal shock test. The resin samples were plunged in liquid nitrogen (-196°C, 10 min) and transferred to an oven (60°C, 10 min). This was repeated 20 times. Transfer time is less than 1 min.
TECHNOLOGY DEVELOPMENTAL STAGE
The technology is currently under experimental research.

APPLICATIONS
Perfect for structures placed in outer space for communication and exploration purposes.

PATENT STATUS
Inventor: Dr. Suong Van Hoa.
Pending patent: US 11/873,950
CA 2,606,973

BUSINESS OPPORTUNITY
License available. Looking for strategic partnership in the space field.

CONTACT
Duc LeVan, **Director commercialization**, duc.levan@valeosec.com